Locomotion

Preprogrammed steps

class flygym.examples.locomotion.PreprogrammedSteps(path=None, neutral_pose_phases=(np.pi, np.pi, np.pi, np.pi, np.pi, np.pi))

Bases: object

Preprogrammed steps by each leg extracted from experimental recordings.

Parameters:
pathstr or Path, optional

Path to the preprogrammed steps data. If None, the default preprogrammed steps data will be loaded.

neutral_pose_phaseslist[float]

Phase during the preprogrammed step that should be considered the “neutral” resting pose. This is specified for each of the 6 limbs and normalized to [0, 2π).

Attributes:
legslist[str]

List of leg names (e.g. LF for left front leg).

dofs_per_leglist[str]

List of names for degrees of freedom for each leg.

durationfloat

Duration of the preprogrammed step (at 1x speed) in seconds.

neutral_posdict[str, np.ndarray]

Neutral position of DoFs for each leg. Keys are leg names; values are joint angles in the order of self.dofs_per_leg.

swing_perioddict[str, np.ndarray]

The start and end of the lifted swing phase for each leg. Keys are leg names; values are arrays of shape (2,) with the start and end of the swing normalized to [0, 2π].

property default_pose

Default pose of the fly (all legs in neutral position) given as a single array. It is ready to be used as the “joints” state in the action space of NeuroMechFly like the following: NeuroMechFly.step(action={"joints": preprogrammed_steps.default_pose}).

dofs_per_leg = ['Coxa', 'Coxa_roll', 'Coxa_yaw', 'Femur', 'Femur_roll', 'Tibia', 'Tarsus1']
get_adhesion_onoff(leg, phase)

Get whether adhesion is on for a given leg at a given phase.

Parameters:
legstr

Leg name.

phasefloat or np.ndarray

Phase or array of phases of the step normalized to [0, 2π].

Returns:
bool or np.ndarray

Whether adhesion is on for the leg at the given phase(s). A boolean array of shape (n,) is returned if phase is a 1D array of n elements; a bool is returned if phase is a scalar.

get_joint_angles(leg, phase, magnitude=1)

Get joint angles for a given leg at a given phase.

Parameters:
legstr

Leg name.

phasefloat or np.ndarray

Phase or array of phases of the step normalized to [0, 2π].

magnitudefloat or np.ndarray, optional

Magnitude of the step. Default: 1 (the preprogrammed steps as provided).

Returns:
np.ndarray

Joint angles of the leg at the given phase(s). The shape of the array is (7, n) if phase is a 1D array of n elements, or (7,) if phase is a scalar.

legs = ['LF', 'LM', 'LH', 'RF', 'RM', 'RH']

CPG controller

class flygym.examples.locomotion.CPGNetwork(timestep, intrinsic_freqs, intrinsic_amps, coupling_weights, phase_biases, convergence_coefs, init_phases=None, init_magnitudes=None, seed=0)

Bases: object

reset(init_phases=None, init_magnitudes=None)

Reset the phases and magnitudes of the oscillators. High magnitudes and unfortunate phases might cause physics error.

step()

Integrate the ODEs using Euler’s method.

Rule-based controller

class flygym.examples.locomotion.RuleBasedController(timestep, rules_graph, weights, preprogrammed_steps, margin=0.001, seed=0)

Bases: object

Parameters:
timestepfloat

The timestep of the simulation.

rules_graphnx.MultiDiGraph

The rules graph that defines the interactions between the legs.

weightsdict

The weights for each rule.

preprogrammed_stepsPreprogrammedSteps, optional

Preprogrammed steps to be used for leg movement.

marginfloat, optional

The margin for selecting the highest scoring leg.

seedint, optional

The random seed to use for selecting the highest scoring leg.

property combined_scores

The global score for all legs. The highest scoring leg is selected for stepping.

legs = ['LF', 'LM', 'LH', 'RF', 'RM', 'RH']
step()

Steps the controller for one timestep. Updates the leg phases. Updates the scores based on the rules.

Hybrid turning controller

class flygym.examples.locomotion.HybridTurningController(fly: Fly, preprogrammed_steps=None, intrinsic_freqs=np.ones(6) * 12, intrinsic_amps=np.ones(6) * 1, phase_biases=_tripod_phase_biases, coupling_weights=_tripod_coupling_weights, convergence_coefs=np.ones(6) * 20, init_phases=None, init_magnitudes=None, stumble_segments=('Tibia', 'Tarsus1', 'Tarsus2'), stumbling_force_threshold=-1, correction_vectors=_default_correction_vectors, correction_rates=_default_correction_rates, amplitude_range=(-0.5, 1.5), draw_corrections=False, max_increment=80 / 1e-4, retraction_persistence_duration=20 / 1e-4, retraction_persistence_initiation_threshold=20 / 1e-4, seed=0, **kwargs)

Bases: SingleFlySimulation

This class implements a controller that uses a CPG network to generate leg movements and uses a set of sensory-based rules to correct for stumbling and retraction. The controller also receives a 2D descending input to modulate the amplitudes and frequencies of the CPGs to accomplish turning.

Parameters:
flyFly

The fly object to be simulated.

preprogrammed_stepsPreprogrammedSteps, optional

Preprogrammed steps to be used for leg movement.

intrinsic_freqsnp.ndarray, optional

Intrinsic frequencies of the CPGs. See CPGNetwork for details.

intrinsic_ampsnp.ndarray, optional

Intrinsic amplitudes of the CPGs. See CPGNetwork for details.

phase_biasesnp.ndarray, optional

Phase biases of the CPGs. See CPGNetwork for details.

coupling_weightsnp.ndarray, optional

Coupling weights of the CPGs. See CPGNetwork for details.

convergence_coefsnp.ndarray, optional

Convergence coefficients of the CPGs. See CPGNetwork for details.

init_phasesnp.ndarray, optional

Initial phases of the CPGs. See CPGNetwork for details.

init_magnitudesnp.ndarray, optional

Initial magnitudes of the CPGs. See CPGNetwork for details.

stumble_segmentstuple, optional

Leg segments to be used for stumbling detection.

stumbling_force_thresholdfloat, optional

Threshold for stumbling detection.

correction_vectorsdict, optional

Correction vectors for each leg.

correction_ratesdict, optional

Correction rates for retraction and stumbling.

amplitude_rangetuple, optional

Range for leg lifting correction.

draw_correctionsbool, optional

Whether to color-code legs to indicate if correction rules are active in the rendered video.

max_incrementfloat, optional

Maximum duration of the correction before it is capped.

retraction_persist3nce_durationfloat, optional

Time spend in a persistent state (leg is further retracted) even if the rule is no longer active

retraction_persist3nce_initiation_thresholdfloat, optional

Amount of time the leg had to be retracted for for the persistence to be initiated (prevents activation of persistence for noise driven rule activations)

seedint, optional

Seed for the random number generator.

**kwargs

Additional keyword arguments to be passed to SingleFlySimulation.__init__.

Notes

Please refer to the “MPD Task Specifications” page of the API references for the detailed specifications of the action space, the observation space, the reward, the “terminated” and “truncated” flags, and the “info” dictionary.

property action_space
close() None

Close the simulation, save data, and release any resources.

get_observation() ObsType
get_wrapper_attr(name: str) Any

Gets the attribute name from the environment.

property gravity
metadata: dict[str, Any] = {'render_modes': []}
property np_random: Generator

Returns the environment’s internal _np_random that if not set will initialise with a random seed.

Returns:

Instances of np.random.Generator

property observation_space
render(*args, **kwargs)

Compute the render frames as specified by render_mode during the initialization of the environment.

The environment’s metadata render modes (env.metadata[“render_modes”]) should contain the possible ways to implement the render modes. In addition, list versions for most render modes is achieved through gymnasium.make which automatically applies a wrapper to collect rendered frames.

Note:

As the render_mode is known during __init__, the objects used to render the environment state should be initialised in __init__.

By convention, if the render_mode is:

  • None (default): no render is computed.

  • “human”: The environment is continuously rendered in the current display or terminal, usually for human consumption. This rendering should occur during step() and render() doesn’t need to be called. Returns None.

  • “rgb_array”: Return a single frame representing the current state of the environment. A frame is a np.ndarray with shape (x, y, 3) representing RGB values for an x-by-y pixel image.

  • “ansi”: Return a strings (str) or StringIO.StringIO containing a terminal-style text representation for each time step. The text can include newlines and ANSI escape sequences (e.g. for colors).

  • “rgb_array_list” and “ansi_list”: List based version of render modes are possible (except Human) through the wrapper, gymnasium.wrappers.RenderCollection that is automatically applied during gymnasium.make(..., render_mode="rgb_array_list"). The frames collected are popped after render() is called or reset().

Note:

Make sure that your class’s metadata "render_modes" key includes the list of supported modes.

Changed in version 0.25.0: The render function was changed to no longer accept parameters, rather these parameters should be specified in the environment initialised, i.e., gymnasium.make("CartPole-v1", render_mode="human")

render_mode: str | None = None
reset(seed=None, init_phases=None, init_magnitudes=None, **kwargs)

Reset the simulation.

Parameters:
seedint, optional

Seed for the random number generator. If None, the simulation is re-seeded without a specific seed. For reproducibility, always specify a seed.

init_phasesnp.ndarray, optional

Initial phases of the CPGs. See CPGNetwork for details.

init_magnitudesnp.ndarray, optional

Initial magnitudes of the CPGs. See CPGNetwork for details.

**kwargs

Additional keyword arguments to be passed to SingleFlySimulation.reset.

Returns:
np.ndarray

Initial observation upon reset.

dict

Additional information.

reward_range = (-inf, inf)
set_slope(slope: float, rot_axis='y')

Set the slope of the simulation environment and modify the camera orientation so that gravity is always pointing down. Changing the gravity vector might be useful during climbing simulations. The change in the camera angle has been extensively tested for the simple cameras (left, right, top, bottom, front, back) but not for the composed ones.

Parameters:
slopefloat

The desired_slope of the environment in degrees.

rot_axisstr, optional

The axis about which the slope is applied, by default “y”.

spec: EnvSpec | None = None
step(action)

Step the simulation forward one timestep.

Parameters:
actionnp.ndarray

Array of shape (2,) containing descending signal encoding turning.

property unwrapped: Env[ObsType, ActType]

Returns the base non-wrapped environment.

Returns:

Env: The base non-wrapped gymnasium.Env instance

Hybrid turning fly

class flygym.examples.locomotion.HybridTurningFly(timestep=1e-4, preprogrammed_steps=None, intrinsic_freqs=np.ones(6) * 12, intrinsic_amps=np.ones(6) * 1, phase_biases=_tripod_phase_biases, coupling_weights=_tripod_coupling_weights, convergence_coefs=np.ones(6) * 20, init_phases=None, init_magnitudes=None, stumble_segments=('Tibia', 'Tarsus1', 'Tarsus2'), stumbling_force_threshold=-1, correction_vectors=_default_correction_vectors, correction_rates=_default_correction_rates, amplitude_range=(-0.5, 1.5), draw_corrections=False, max_increment=80 / 1e-4, retraction_persistence_duration=20 / 1e-4, retraction_persistence_initiation_threshold=20 / 1e-4, seed=0, **kwargs)

Bases: Fly

This class implements a controller that uses a CPG network to generate leg movements and uses a set of sensory-based rules to correct for stumbling and retraction. The controller also receives a 2D descending input to modulate the amplitudes and frequencies of the CPGs to accomplish turning.

Parameters:
preprogrammed_stepsPreprogrammedSteps, optional

Preprogrammed steps to be used for leg movement.

intrinsic_freqsnp.ndarray, optional

Intrinsic frequencies of the CPGs. See CPGNetwork for details.

intrinsic_ampsnp.ndarray, optional

Intrinsic amplitudes of the CPGs. See CPGNetwork for details.

phase_biasesnp.ndarray, optional

Phase biases of the CPGs. See CPGNetwork for details.

coupling_weightsnp.ndarray, optional

Coupling weights of the CPGs. See CPGNetwork for details.

convergence_coefsnp.ndarray, optional

Convergence coefficients of the CPGs. See CPGNetwork for details.

init_phasesnp.ndarray, optional

Initial phases of the CPGs. See CPGNetwork for details.

init_magnitudesnp.ndarray, optional

Initial magnitudes of the CPGs. See CPGNetwork for details.

stumble_segmentstuple, optional

Leg segments to be used for stumbling detection.

stumbling_force_thresholdfloat, optional

Threshold for stumbling detection.

correction_vectorsdict, optional

Correction vectors for each leg.

correction_ratesdict, optional

Correction rates for retraction and stumbling.

amplitude_rangetuple, optional

Range for leg lifting correction.

draw_correctionsbool, optional

Whether to color-code legs to indicate if correction rules are active in the rendered video.

max_incrementfloat, optional

Maximum duration of the correction before it is capped.

retraction_persistence_durationfloat, optional

Time spend in a persistent state (leg is further retracted) even if the rule is no longer active

retraction_persistence_initiation_thresholdfloat, optional

Amount of time the leg had to be retracted for for the persistence to be initiated (prevents activation of persistence for noise driven rule activations)

seedint, optional

Seed for the random number generator.

**kwargs

Additional keyword arguments to be passed to SingleFlySimulation.__init__.

change_segment_color(physics: dm_control.mjcf.Physics, segment: str, color)

Change the color of a segment of the fly.

Parameters:
physicsmjcf.Physics

The physics object of the simulation.

segmentstr

The name of the segment to change the color of.

colortuple[float, float, float, float]

Target color as RGBA values normalized to [0, 1].

close()

Release resources allocated by the environment.

config = {'appearance': {'a12345': {'apply_to': ['A1A2', 'A3', 'A4', 'A5'], 'material': {'rgba': [1, 1, 1, 1]}, 'texture': {'builtin': 'gradient', 'markrgb': [0.7, 0.49, 0.2], 'random': 0.3, 'rgb1': [0.59, 0.39, 0.12], 'rgb2': [0.82, 0.67, 0.47], 'size': 200}}, 'a6': {'apply_to': ['A6'], 'material': {'rgba': [1, 1, 1, 1]}, 'texture': {'builtin': 'gradient', 'markrgb': [0.7, 0.49, 0.2], 'random': 0.3, 'rgb1': [0.39, 0.2, 0], 'rgb2': [0.82, 0.67, 0.47], 'size': 200}}, 'antenna': {'apply_to': ['LPedicel', 'RPedicel', 'LFuniculus', 'RFuniculus'], 'material': {'rgba': [1, 1, 1, 0.8]}, 'texture': {'builtin': 'flat', 'markrgb': [0, 0, 0], 'random': 0.1, 'rgb1': [0.59, 0.39, 0.12], 'rgb2': [0.59, 0.39, 0.12], 'size': 50}}, 'arista': {'apply_to': ['LArista', 'RArista'], 'material': {'rgba': [0.26, 0.2, 0.16, 1.0]}, 'texture': None}, 'coxa': {'apply_to': ['LFCoxa', 'RFCoxa', 'LMCoxa', 'RMCoxa', 'LHCoxa', 'RHCoxa'], 'material': {'rgba': [1, 1, 1, 0.8]}, 'texture': {'builtin': 'flat', 'markrgb': [0, 0, 0], 'random': 0.05, 'rgb1': [0.59, 0.39, 0.12], 'rgb2': [0.59, 0.39, 0.12], 'size': 500}}, 'eye': {'apply_to': ['LEye', 'REye'], 'material': {'rgba': [0.67, 0.21, 0.12, 1]}, 'texture': None}, 'femur': {'apply_to': ['LFFemur', 'RFFemur', 'LMFemur', 'RMFemur', 'LHFemur', 'RHFemur'], 'material': {'rgba': [1, 1, 1, 0.7]}, 'texture': {'builtin': 'flat', 'markrgb': [0, 0, 0], 'random': 0.05, 'rgb1': [0.63, 0.43, 0.16], 'rgb2': [0.63, 0.43, 0.16], 'size': 500}}, 'haltere': {'apply_to': ['LHaltere', 'RHaltere'], 'material': {'rgba': [0.59, 0.43, 0.24, 0.6]}, 'texture': None}, 'head': {'apply_to': ['Head'], 'material': {'rgba': [1, 1, 1, 1]}, 'texture': {'builtin': 'flat', 'markrgb': [0.7, 0.49, 0.2], 'random': 0.3, 'rgb1': [0.59, 0.39, 0.12], 'rgb2': [0.59, 0.39, 0.12], 'size': 50}}, 'proboscis': {'apply_to': ['Haustellum', 'Rostrum'], 'material': {'rgba': [1, 1, 1, 0.8]}, 'texture': {'builtin': 'flat', 'markrgb': [0, 0, 0], 'random': 0.1, 'rgb1': [0.59, 0.39, 0.12], 'rgb2': [0.59, 0.39, 0.12], 'size': 50}}, 'tarsus': {'apply_to': ['LFTarsus1', 'RFTarsus1', 'LMTarsus1', 'RMTarsus1', 'LHTarsus1', 'RHTarsus1', 'LFTarsus2', 'RFTarsus2', 'LMTarsus2', 'RMTarsus2', 'LHTarsus2', 'RHTarsus2', 'LFTarsus3', 'RFTarsus3', 'LMTarsus3', 'RMTarsus3', 'LHTarsus3', 'RHTarsus3', 'LFTarsus4', 'RFTarsus4', 'LMTarsus4', 'RMTarsus4', 'LHTarsus4', 'RHTarsus4', 'LFTarsus5', 'RFTarsus5', 'LMTarsus5', 'RMTarsus5', 'LHTarsus5', 'RHTarsus5'], 'material': {'rgba': [1, 1, 1, 0.5]}, 'texture': {'builtin': 'flat', 'markrgb': [0, 0, 0], 'random': 0.05, 'rgb1': [0.71, 0.51, 0.24], 'rgb2': [0.71, 0.51, 0.24], 'size': 500}}, 'thorax': {'apply_to': ['Thorax'], 'material': {'rgba': [1, 1, 1, 1]}, 'texture': {'builtin': 'flat', 'markrgb': [0.7, 0.49, 0.2], 'random': 0.3, 'rgb1': [0.59, 0.39, 0.12], 'rgb2': [0.59, 0.39, 0.12], 'size': 50}}, 'tibia': {'apply_to': ['LFTibia', 'RFTibia', 'LMTibia', 'RMTibia', 'LHTibia', 'RHTibia'], 'material': {'rgba': [1, 1, 1, 0.6]}, 'texture': {'builtin': 'flat', 'markrgb': [0, 0, 0], 'random': 0.05, 'rgb1': [0.67, 0.47, 0.2], 'rgb2': [0.67, 0.47, 0.2], 'size': 500}}, 'wing': {'apply_to': ['LWing', 'RWing'], 'material': {'rgba': [0.8, 0.8, 0.9, 0.3]}, 'texture': None}}, 'color_cycle_rgb': [[31, 119, 180], [255, 127, 14], [44, 160, 44], [214, 39, 40], [148, 103, 189], [140, 86, 75], [227, 119, 194], [127, 127, 127], [188, 189, 34], [23, 190, 207]], 'flip_detection': {'ignore_period': 0.1, 'min_flip_duration': 0.05}, 'olfaction': {'sensor_positions': {'LAntenna_sensor': {'marker_rgba': [0.08, 0.4, 0.9, 1], 'parent': 'LFuniculus', 'rel_pos': [0.02, 0.0, -0.1]}, 'LMaxillaryPalp_sensor': {'marker_rgba': [0.9, 0.73, 0.08, 1], 'parent': 'Rostrum', 'rel_pos': [-0.15, 0.15, -0.15]}, 'RAntenna_sensor': {'marker_rgba': [0.08, 0.4, 0.9, 1], 'parent': 'RFuniculus', 'rel_pos': [0.02, 0.0, -0.1]}, 'RMaxillaryPalp_sensor': {'marker_rgba': [0.9, 0.73, 0.08, 1], 'parent': 'Rostrum', 'rel_pos': [-0.15, -0.15, -0.15]}}}, 'paths': {'canonical_pale_type_mask': 'vision/pale_mask.npy', 'mjcf': {'deepfly3d': 'mjcf/neuromechfly_deepfly3d_kinorder_ryp.xml', 'deepfly3d_old': 'mjcf/neuromechfly_deepfly3d_kinorder_ryp_old.xml', 'seqik': 'mjcf/neuromechfly_seqik_kinorder_ypr.xml', 'seqik_old': 'mjcf/neuromechfly_seqik_kinorder_ypr_old.xml'}, 'ommatidia_id_map': 'vision/ommatidia_id_map.npy'}, 'vision': {'fisheye_distortion_coefficient': 3.8, 'fisheye_zoom': 2.72, 'fovy_per_eye': 157, 'hidden_segments': ['LFCoxa', 'LEye', 'LArista', 'LFuniculus', 'LPedicel', 'RFCoxa', 'REye', 'RArista', 'RFuniculus', 'RPedicel', 'Head', 'Rostrum', 'Haustellum', 'Thorax'], 'num_ommatidia_per_eye': 721, 'raw_img_height_px': 512, 'raw_img_width_px': 450, 'sensor_positions': {'LEye_cam': {'marker_rgba': [0.07, 0.45, 0.35, 1], 'orientation': [1.57, 0.0, -0.47], 'parent': 'LEye', 'rel_pos': [-0.03, 0.38, 0]}, 'REye_cam': {'marker_rgba': [0.07, 0.45, 0.35, 1], 'orientation': [-1.57, 3.14, 0.47], 'parent': 'REye', 'rel_pos': [-0.03, -0.38, 0]}}}}
get_info()

Any additional information that is not part of the observation. This method always returns an empty dictionary unless extended by the user.

Returns:
dict[str, Any]

The dictionary containing additional information.

get_observation(sim: Simulation) ObsType

Get observation without stepping the physics simulation.

Returns:
ObsType

The observation as defined by the environment.

get_reward()

Get the reward for the current state of the environment. This method always returns 0 unless extended by the user.

Returns:
float

The reward.

init_floor_contacts(arena: BaseArena)

Initialize contacts between the fly and the floor. This is called by the Simulation after the fly is placed in the arena and before setting up the physics engine.

Parameters:
arenaBaseArena

The arena in which the fly is placed.

is_terminated()

Whether the episode has terminated due to factors that are defined within the Markov Decision Process (e.g. task completion/ failure, etc.). This method always returns False unless extended by the user.

Returns:
bool

Whether the simulation is terminated.

is_truncated()
Whether the episode has terminated due to factors beyond the

Markov Decision Process (e.g. time limit, etc.). This method always returns False unless extended by the user.

Returns:
bool

Whether the simulation is truncated.

n_legs = 6
property name: str
observation_space: spaces.Dict
post_init(sim: Simulation)

Initialize attributes that depend on the arena or physics of the simulation.

Parameters:
simSimulation

Simulation object.

post_step(sim: Simulation)
pre_step(action, sim: Simulation)

Step the simulation forward one timestep.

Parameters:
simSimulation

Simulation object.

actionnp.ndarray

Array of shape (2,) containing descending signal encoding turning.

reset(sim: Simulation, seed=None, init_phases=None, init_magnitudes=None, **kwargs)

Reset the fly.

Parameters:
simSimulation

Simulation object.

seedint, optional

Seed for the random number generator. If None, the simulation is re-seeded without a specific seed. For reproducibility, always specify a seed.

init_phasesnp.ndarray, optional

Initial phases of the CPGs. See CPGNetwork for details.

init_magnitudesnp.ndarray, optional

Initial magnitudes of the CPGs. See CPGNetwork for details.

**kwargs

Additional keyword arguments to be passed to SingleFlySimulation.reset.

Returns:
np.ndarray

Initial observation upon reset.

dict

Additional information.

set_pose(pose: KinematicPose, physics: dm_control.mjcf.Physics)
update_colors(physics: dm_control.mjcf.Physics)

Update the colors of the fly’s body segments. This is typically called by Simulation.render to update the colors of the fly before the cameras do the rendering.

Parameters:
physicsmjcf.Physics

The physics object of the simulation.

property vision_update_mask: ndarray

The refresh frequency of the visual system is often loser than the same as the physics simulation time step. This 1D mask, whose size is the same as the number of simulation time steps, indicates in which time steps the visual inputs have been refreshed. In other words, the visual input frames where this mask is False are repetitions of the previous updated visual input frames.

Utility class for coloring body segments of the fly

The following utility class is a wrapper around the Fly class that facilitates the recoloring of specific segments. This is useful for, as an example, recoloring parts of the leg depending on the activation of specific correction rules.

class flygym.examples.locomotion.ColorableFly(recolor_types=('femur', 'tibia'), **kwargs)

Bases: Fly

A wrapper around the Fly class that facilitates the recoloring of specific segments. This is useful for, as an example, recoloring parts of the leg depending on the activation of specific correction rules.

This class is necessary because the leg segments would otherwise not be colored as intended: “textures are applied in GL_MODULATE mode, meaning that the texture color and the color specified here are multiplied component-wise” as mentioned in the MuJoCo documentation. This class overrides the impact of the default texture on the resulting final color. See https://mujoco.readthedocs.io/en/stable/XMLreference.html#asset-material-rgba

change_segment_color(physics: dm_control.mjcf.Physics, segment: str, color=None)

Change the color of a segment of the fly.

Parameters:
physicsmjcf.Physics

The physics object of the simulation.

segmentstr

The name of the segment to change the color of.

colortuple[float, float, float, float]

Target color as RGBA values normalized to [0, 1].

close()

Release resources allocated by the environment.

config = {'appearance': {'a12345': {'apply_to': ['A1A2', 'A3', 'A4', 'A5'], 'material': {'rgba': [1, 1, 1, 1]}, 'texture': {'builtin': 'gradient', 'markrgb': [0.7, 0.49, 0.2], 'random': 0.3, 'rgb1': [0.59, 0.39, 0.12], 'rgb2': [0.82, 0.67, 0.47], 'size': 200}}, 'a6': {'apply_to': ['A6'], 'material': {'rgba': [1, 1, 1, 1]}, 'texture': {'builtin': 'gradient', 'markrgb': [0.7, 0.49, 0.2], 'random': 0.3, 'rgb1': [0.39, 0.2, 0], 'rgb2': [0.82, 0.67, 0.47], 'size': 200}}, 'antenna': {'apply_to': ['LPedicel', 'RPedicel', 'LFuniculus', 'RFuniculus'], 'material': {'rgba': [1, 1, 1, 0.8]}, 'texture': {'builtin': 'flat', 'markrgb': [0, 0, 0], 'random': 0.1, 'rgb1': [0.59, 0.39, 0.12], 'rgb2': [0.59, 0.39, 0.12], 'size': 50}}, 'arista': {'apply_to': ['LArista', 'RArista'], 'material': {'rgba': [0.26, 0.2, 0.16, 1.0]}, 'texture': None}, 'coxa': {'apply_to': ['LFCoxa', 'RFCoxa', 'LMCoxa', 'RMCoxa', 'LHCoxa', 'RHCoxa'], 'material': {'rgba': [1, 1, 1, 0.8]}, 'texture': {'builtin': 'flat', 'markrgb': [0, 0, 0], 'random': 0.05, 'rgb1': [0.59, 0.39, 0.12], 'rgb2': [0.59, 0.39, 0.12], 'size': 500}}, 'eye': {'apply_to': ['LEye', 'REye'], 'material': {'rgba': [0.67, 0.21, 0.12, 1]}, 'texture': None}, 'femur': {'apply_to': ['LFFemur', 'RFFemur', 'LMFemur', 'RMFemur', 'LHFemur', 'RHFemur'], 'material': {'rgba': [1, 1, 1, 0.7]}, 'texture': {'builtin': 'flat', 'markrgb': [0, 0, 0], 'random': 0.05, 'rgb1': [0.63, 0.43, 0.16], 'rgb2': [0.63, 0.43, 0.16], 'size': 500}}, 'haltere': {'apply_to': ['LHaltere', 'RHaltere'], 'material': {'rgba': [0.59, 0.43, 0.24, 0.6]}, 'texture': None}, 'head': {'apply_to': ['Head'], 'material': {'rgba': [1, 1, 1, 1]}, 'texture': {'builtin': 'flat', 'markrgb': [0.7, 0.49, 0.2], 'random': 0.3, 'rgb1': [0.59, 0.39, 0.12], 'rgb2': [0.59, 0.39, 0.12], 'size': 50}}, 'proboscis': {'apply_to': ['Haustellum', 'Rostrum'], 'material': {'rgba': [1, 1, 1, 0.8]}, 'texture': {'builtin': 'flat', 'markrgb': [0, 0, 0], 'random': 0.1, 'rgb1': [0.59, 0.39, 0.12], 'rgb2': [0.59, 0.39, 0.12], 'size': 50}}, 'tarsus': {'apply_to': ['LFTarsus1', 'RFTarsus1', 'LMTarsus1', 'RMTarsus1', 'LHTarsus1', 'RHTarsus1', 'LFTarsus2', 'RFTarsus2', 'LMTarsus2', 'RMTarsus2', 'LHTarsus2', 'RHTarsus2', 'LFTarsus3', 'RFTarsus3', 'LMTarsus3', 'RMTarsus3', 'LHTarsus3', 'RHTarsus3', 'LFTarsus4', 'RFTarsus4', 'LMTarsus4', 'RMTarsus4', 'LHTarsus4', 'RHTarsus4', 'LFTarsus5', 'RFTarsus5', 'LMTarsus5', 'RMTarsus5', 'LHTarsus5', 'RHTarsus5'], 'material': {'rgba': [1, 1, 1, 0.5]}, 'texture': {'builtin': 'flat', 'markrgb': [0, 0, 0], 'random': 0.05, 'rgb1': [0.71, 0.51, 0.24], 'rgb2': [0.71, 0.51, 0.24], 'size': 500}}, 'thorax': {'apply_to': ['Thorax'], 'material': {'rgba': [1, 1, 1, 1]}, 'texture': {'builtin': 'flat', 'markrgb': [0.7, 0.49, 0.2], 'random': 0.3, 'rgb1': [0.59, 0.39, 0.12], 'rgb2': [0.59, 0.39, 0.12], 'size': 50}}, 'tibia': {'apply_to': ['LFTibia', 'RFTibia', 'LMTibia', 'RMTibia', 'LHTibia', 'RHTibia'], 'material': {'rgba': [1, 1, 1, 0.6]}, 'texture': {'builtin': 'flat', 'markrgb': [0, 0, 0], 'random': 0.05, 'rgb1': [0.67, 0.47, 0.2], 'rgb2': [0.67, 0.47, 0.2], 'size': 500}}, 'wing': {'apply_to': ['LWing', 'RWing'], 'material': {'rgba': [0.8, 0.8, 0.9, 0.3]}, 'texture': None}}, 'color_cycle_rgb': [[31, 119, 180], [255, 127, 14], [44, 160, 44], [214, 39, 40], [148, 103, 189], [140, 86, 75], [227, 119, 194], [127, 127, 127], [188, 189, 34], [23, 190, 207]], 'flip_detection': {'ignore_period': 0.1, 'min_flip_duration': 0.05}, 'olfaction': {'sensor_positions': {'LAntenna_sensor': {'marker_rgba': [0.08, 0.4, 0.9, 1], 'parent': 'LFuniculus', 'rel_pos': [0.02, 0.0, -0.1]}, 'LMaxillaryPalp_sensor': {'marker_rgba': [0.9, 0.73, 0.08, 1], 'parent': 'Rostrum', 'rel_pos': [-0.15, 0.15, -0.15]}, 'RAntenna_sensor': {'marker_rgba': [0.08, 0.4, 0.9, 1], 'parent': 'RFuniculus', 'rel_pos': [0.02, 0.0, -0.1]}, 'RMaxillaryPalp_sensor': {'marker_rgba': [0.9, 0.73, 0.08, 1], 'parent': 'Rostrum', 'rel_pos': [-0.15, -0.15, -0.15]}}}, 'paths': {'canonical_pale_type_mask': 'vision/pale_mask.npy', 'mjcf': {'deepfly3d': 'mjcf/neuromechfly_deepfly3d_kinorder_ryp.xml', 'deepfly3d_old': 'mjcf/neuromechfly_deepfly3d_kinorder_ryp_old.xml', 'seqik': 'mjcf/neuromechfly_seqik_kinorder_ypr.xml', 'seqik_old': 'mjcf/neuromechfly_seqik_kinorder_ypr_old.xml'}, 'ommatidia_id_map': 'vision/ommatidia_id_map.npy'}, 'vision': {'fisheye_distortion_coefficient': 3.8, 'fisheye_zoom': 2.72, 'fovy_per_eye': 157, 'hidden_segments': ['LFCoxa', 'LEye', 'LArista', 'LFuniculus', 'LPedicel', 'RFCoxa', 'REye', 'RArista', 'RFuniculus', 'RPedicel', 'Head', 'Rostrum', 'Haustellum', 'Thorax'], 'num_ommatidia_per_eye': 721, 'raw_img_height_px': 512, 'raw_img_width_px': 450, 'sensor_positions': {'LEye_cam': {'marker_rgba': [0.07, 0.45, 0.35, 1], 'orientation': [1.57, 0.0, -0.47], 'parent': 'LEye', 'rel_pos': [-0.03, 0.38, 0]}, 'REye_cam': {'marker_rgba': [0.07, 0.45, 0.35, 1], 'orientation': [-1.57, 3.14, 0.47], 'parent': 'REye', 'rel_pos': [-0.03, -0.38, 0]}}}}
get_info()

Any additional information that is not part of the observation. This method always returns an empty dictionary unless extended by the user.

Returns:
dict[str, Any]

The dictionary containing additional information.

get_observation(sim: Simulation) ObsType

Get observation without stepping the physics simulation.

Returns:
ObsType

The observation as defined by the environment.

get_reward()

Get the reward for the current state of the environment. This method always returns 0 unless extended by the user.

Returns:
float

The reward.

init_floor_contacts(arena: BaseArena)

Initialize contacts between the fly and the floor. This is called by the Simulation after the fly is placed in the arena and before setting up the physics engine.

Parameters:
arenaBaseArena

The arena in which the fly is placed.

is_terminated()

Whether the episode has terminated due to factors that are defined within the Markov Decision Process (e.g. task completion/ failure, etc.). This method always returns False unless extended by the user.

Returns:
bool

Whether the simulation is terminated.

is_truncated()
Whether the episode has terminated due to factors beyond the

Markov Decision Process (e.g. time limit, etc.). This method always returns False unless extended by the user.

Returns:
bool

Whether the simulation is truncated.

n_legs = 6
property name: str
observation_space: spaces.Dict
post_init(sim: Simulation)

Initialize attributes that depend on the arena or physics of the simulation.

Parameters:
simSimulation

Simulation object.

post_step(sim: Simulation)
pre_step(action, sim: Simulation)
reset(sim: Simulation, **kwargs)
set_pose(pose: KinematicPose, physics: dm_control.mjcf.Physics)
update_colors(physics: dm_control.mjcf.Physics)

Update the colors of the fly’s body segments. This is typically called by Simulation.render to update the colors of the fly before the cameras do the rendering.

Parameters:
physicsmjcf.Physics

The physics object of the simulation.

property vision_update_mask: ndarray

The refresh frequency of the visual system is often loser than the same as the physics simulation time step. This 1D mask, whose size is the same as the number of simulation time steps, indicates in which time steps the visual inputs have been refreshed. In other words, the visual input frames where this mask is False are repetitions of the previous updated visual input frames.